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form of the approximate wave function. In that case,
the relative accuracy of two or more approximate wave
functions, which give comparable energy values, could
be determined by the ratios of the corresponding I&
values.

It should be noted that a trial wave function which
minimizes the energy, with respect to some variational
parameter, satisfies the Hellmann-Feynman theorem. "

e G. G. Hall, Phil. Mag. (London) 6, 249 (1961).

One further point is in order. Equation (9) implies
the phase relationship (8). Care must be taken not to
make simultaneous use of formulas which presuppose
another choice of phase.
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The analyticity of the scattering amplitude in the variables, energy, and angular momentum is explicitly
studied for square well and a class of continuous potentials having a 1/r' type of core or tail. The trajectories
of the poles in the l plane and their residues have been determined numerically.

I. INTRODUCTION

'HE conjectures about the existence and properties
of poles of the relativistic S matrix in complex

angular momentum in the theory of strong interactions
are based on the corresponding situation in potential
scattering. The analyticity in the variables momentum
k and angular momentum l in the case of potential
scattering has been discussed by Regge' and by
Froissart. '

The purpose of the present work is to study explicitly
the trajectories of the poles and their residues for a class
of soluble potentials. In Sec. II we discuss the analytic-
ity of the S matrix in terms of the logarithmic derivative
of the wave functions. The conclusions of this section
are valid for all cutoff potentials. The contours in the
l plane for the Watson-Sommerfeld transformation are
discussed in Sec. III and the determination of the
singularities in Sec. IV. In the following sections the
potentials are considered explicitly and the numerical
results and their interpretations are given.

II. ANALYTIC CONTINUATION OF THE S
MATRIX IN / AND 0

We consider the radial Schrodinger equation with
comPlex k and comPlex X= l+xp in units tt'= 2nt= 1,

p
d'

+v — —r(r))y(kz, ,r)=0. (1)
(dr' r2

* Supported in part by the Air Force Office of Scientific Research
t Harkness Fellow of the Commonwealth Fund, New York, on

leave of absence from Istituto Nazionale di Fisica Nucleare,
Sezione di Roma, Roma, Italy and Istituto di Fisica dell Univer-
sita, Roma, Italy.

'T. Regge, Nuovo cimento 14, 951 (1959); 18, 947 (1960);

The potential U(r) is assumed to vanish outside a
sphere of radius r p, or behave as 1/r' for r) r p

A
V(r)= Vp(r)8(rp r)+ 8(r r—p). — —

r2

The tail of the potential could be eliminated by writing

A A
V(r) =

~
Vp(r) ——8(rp r)+—

r2 r2'

and absorbing the last part into the centrifugal term in
Eq. (1). The effective 'A in Eq. (1) would be then
()'—A)'*. However, it is more convenient to treat the
tail of the potential separately. Inside the region r«p,
the potential is arbitrary as long as the logarithmic
derivative of ()o exists at r=rp. The solution of Eq. (1)
in the region ~ & rp may be written as

(p(k, v,r) =B&(k,v) (kr)"'J„(kr)+Bp(k, v) (kr)"'J „(kr),
r) rp, (2)

where

v=)(= l+ ', if V=0 f-or r) r p, (3a)

v= [(1+x)'—A)"' if U=A/r' for r) re (3b).
Here J.(s) and J „(s) are the usual Bessel functions
which are linearly independent except when v is an
integer. They are entire functions of p in the product
domain of the whole v plane and the s plane except for
a possible branch point at s=0. The circuit relation at

A. Bottino, A. M. Longoni, and T. Regge, ibid. 23, 954 (1962).' M. Froissart (to be published).
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a=0 is
J,(se'" ) = e' "J„(s), nz integer.

The asymptotic form of Eq. (2) is

(p(k, v, r) —+Bi(k,v) sin kr ——+-
r—voo 2

For convenience, we also give another form of the 5
(4) matrix which is useful for studying the threshold

behavior of the amplitude and its singulariti. es'

Ir (k v) +kove(vv

S(k p)
—e)vv(x—v)

V(k, v)+k'"e '""

(12)Y(k, v) = (B)/Bp) k'".( 7rv

+Bp(k, v) sin~ kr+ +—.—(5)
2

rpL (k, v)
—= rpL (k,X)

The unknown function (Bp/Bi) in Eqs. (8) to (12)
can be related to the logarithmic derivative L(k,X) of

To define the S matrix, we comPare Eq. (5) with the the interior solution of Fq. (1) at r=rp as follows:
asymptotic form of y in terms of the phase shifts

Hence
where the phase shifts i)(k, v) have been defined as in
the case of real k and integer l. Note that prX/2 and not B2/Bi
sv/2 appears in the argument of the sine function in
Eq. (6), so that even if vAX the partial-wave amplitudes
are given by

1 1
3 (k, v) = (e-'"(" "'—1)=—e"(" "' sini)(k, v). (7)

2ik k

J„'(krp)+ (Bp/Bi) J „'(krp)
= —,'+krp (13)

J,(kro)+ (Bo/Bi)J .(krp)

kroJ„'(kro) —[roL(k,) )——,']J„(kro)

kr()J .'(kr()) —[rpL(k, P ) ',]J—,-(kr())

[v+ p roL (k,X)]J—„(kro)
—kr pJ„+i (kro)

. (14)
[v+-,' —rpL(k X)]J „(krp)+krpJ („+i)(krp)

Clearly, this definition of 8(k,v) and, therefore, of the
5 matrix, is not unique since 8 can be multiplied by
factors of the form

1+F (k,l)/I'( —l),

which are equal to unity for physical values of l. Here
F(k,l) is an arbitrary function which does not have
poles at positive integral values of /. We shall come back
to this question in the next section. We note here that
we have chosen a particular analytic continuation,
Eq. (16), namely, the normal one which is also that
used by Regge for the superposition of Yukawa
potentials. '

From Eqs. (5) and (6) we obtain the reaction matrix

K—= tani) (k, v)

Bi(k,v)sinPpr(X —v)]+B,(k, v)sin[-,'pr (X+v)]
(8)

Bi(k,v) cosPs (X—v))+Bi(k, v) cos[-,'pr (X+v)]

the 5 matrix
1+iK 1+e' "(Bp/Bi)

S(k ) ev'vv(l —v)

1—iK 1+e ' "(Bp/B))

and the partial wave amplitude

1 K
A (k,v) =-

k1—~E

This expression can now be inserted into Eqs. (8) to
(12). It may seem from Eq. (12) that the scattering
amplitude vanishes for X=v=n =integer (nonphysical).
However, from (14), Bp/Bi ———(—1)"; hence S(k, )
is indeterminate. A convenient formula for the 5 matrix,
which eliminates this indeterminacy and which is useful
for numerical calculations, is

S(k p) e(vv O,—v)

[v+ p
—

rpL (k,X)]H„(krp) —krpH„+i (P ' (krp)

[v+—',—rpL, (k,X)]H„(')(krp) —krpH. +i(' (kro)

where the Hankel functions are given by

H "'(s)= (i/sinprv)[e ' "J (s)—J (s)]
H„"'(s)= (—i/sinprv)[e" "J„(s)—J „(s)).

We now discuss, with the help of Eq. (15), the
unitarity and the symmetry of the 5 matrix. If the
logarithmic derivative I.(k, v) is a real analytic function
of both arguments, we obtain the analytically continued
unitarity condition

[S(V, .')]' S(k,.) =1. (16)

Furthermore, from the circuit relations for the Hankel
functions and assuming that L(k, v) is even in k,
I.(—k, v) =L(k,v), we obtain

S(ke' v) v= —e"~vS '(k )v+2e'~ cvosmv (17)
1 (B,/Bi)sinprv+e*" (' "' sin[ppr(X —v))

1 +e—)v.v(B /B )

and the circuit relation for the 5 matrix around the
(10)

' A, O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 I'l962).
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branch point at k =0:
S(k,v)

S(keP" v) = 2e'~" cos~v+- —. (18)
1—2e '~" cos~vS(k, v)

Equations (17) and (18) have also been proved for
Yukawa-type potentials" and in the relativistic case. '
We note that the branch point at k=0 disappears for
half-integer (physical) values of v in which case Eq. (17)
reduces to the familiar symmetry relation S(—k, v)

)&S(k,v) =1. We also note the useful relation obtained
by combining Eqs. (16) and (17)

S(ke', v) = 2e" "cos~v —e'" "LS(k*,v*)]~,

which is the generalization of the relation S(—k, /)
= )S(k*,l)]* for integral values of /.

We also see that if X=v, the so-called Mandelstam
symmetry'

A (k, 'A) =A (k, —X), X= integer (nonphysical), (20)

holds, provided L(k,X) has this property, as is the case
in the examples considered in Sec. V. If XW v (i.e., 1/r'
tail in the potential), this property, in general, is not
true.

Ke are now in the position to discuss the analyticity
of the 5 matrix in both variables k and A. Except for
the singularities of L(k,X) which, of course, depend on
the potential in the interior region, the 5 matrix is
meromorphic in the product of the whole ) plane and
the whole k plane with a branch point at k=0 (except
when v is half-integer), and an essential singularity at
infinity both in the k and ) planes.

It is seen from Eq. (3b) that for potentials with a
1/r' tail the function v(X) has two fixed branch points
independent of energy. However, in the 5 matrix the
corresponding cut in the X plane cancels; in fact, it is
not even present in the radial wave function q(k, X,r).
To show this, we notice that going around one of the
branch points changes v into —v, which, by Eq. (14),
exchanges Bp into Bi But th.e S matrix, Eq. (9), does
not change when s ~ —v and Bi~B~ for fixed X.

Finally, we remark that the 5 matrix may have, in
general, the so-called nonessential singularities of the
second kind (indeterminacy points), ' where it is of the
form 0/0. The indeterminacy points are a peculiarity
of functions of two or more complex variables. They are
isolated points in the case of two complex variables, in
the neighborhood of which the 5 matrix takes any
value. These indeterminacy points can be interpreted as
"states" for which the wave function is completely
confined inside the region r(rp. For, if we write Eq. (2)
in the form

y(k, v, r) =A i(k, v) (kr)lH„"'(kr)
+A Q(k, v) (kr) 'H„"' (kr), r) rp&

4 S. Mandelstam, Ann. Phys. (New York) 19, 254 (j.962}.
~ H. Behnke and P. Thullen, Theoric der Fuektioeen Mehrerer

IComplexer Veranderlichel (Verlag Julius Springer, Berlin, 1934}.

the 5 matrix is given by the ratio of A ~ and A 2, and the
indeterminacy points correspond to both A~ and A2
being zero. Of course, these points do not occur for
physical values of k and l. In principle, one expects to
find the indeterminacy points for any potential (e.g. ,
for an attractive Coulomb potential they occur at
/= —$(e+m)/2] —1, E= —e'/(m —e)', where m and
rs are nonnegative integers]

1
A (k.~, cos8) =-

2i

(2/+1)d/ A (kP, l)Pi( —cos8)
(22)

if A(k', l) is holomorphic inside the contour and ap-
proaches zero exponentially for / ~ pp (see Appendix I) .
If A(k', /) is meromorphic, to be precise, holomorphic
except for a finite number of single poles, in the region
Re/) ——,', k fixed, and the integral (22) exists for the
contour C' (Fig. 1), then Eq. (22) can be transformed
into the following representation;

1
A(k-', cos8) =-

2i el=—1/4

(2/+1)dl A (k' l)I'~( —cos8)

sin l

(2u„+1)P (k)P (—cos8)+P, (23)
sinn n„(k)

where we have also assumed that the integral over the

. Irn(E

FIG. 1, Contours in
the / plane for Watson-
Sommerfeld transforma-
tion.
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III. WATSON-SOMMERFELD TRANSFORMATION

The analytic continuation in angular momentum 1

is used to separate from the scattering amplitude
singular terms which correspond to bound states and
resonances on the one hand, and, on the other hand,
control the asymptotic behavior of the scattering
amplitude for large momentum transfer. For this
purpose the partial-wave expansion of the scattering
amplitude

A (k' co~8) =Pi(2/+1)A (k', l)Pi(cos8) (21)

is transformed into a contour integral in the right-hand
/ plane. For the contour C shown in Fig. 1, we have'
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A(k', cos8) —& t (24)

large half-circle of C' vanishes. In Eq. (23) n„(k) are
the poles of the scattering amplitude A(k', l) in the l
plane (Rel) —oi) for fixed k, and P„(k) are its residues
at the poles.

Assuming now that the representation (23) holds,
we obtain the asymptotic form of the amplitude for
large momentum transfer t, where t= —2k'(1 —cose),
from the position n,„(k) of the pole in the / plane with
the largest real part:

hence, from Eq. (14),

( /)8,/Bi —&

I "I 2 p sing p

kro 2 '"
I-r(,)1-

v (2v —2roL+1) —k'ro'
X

2p+2roL —1
+L1+0(k'/v) ). (26)

Furthermore, in the right-hand p plane

I'(p) ~ (2m)'e "e~" ' '""[1+O(1/v)j, IargvI &2m.
t vI~oo

Note that the first integral in Kq. (23) behaves as t

for t —& ~. Furthermore, we see from the representation
(23) that the scattering amplitude is analytic in the
whole s=cos0 plane cut from s = 1 to ~, namely, the
cut of P (—e). This cut, however, may be reduced by
cancellations as is the case, for example, for Vukawa-

type potentials where the cut runs from s= 1+p'/2k' to
s= ~, p being the lowest mass of the Yukawa potential.
It follows from Eq. (23) that the physical partial-wave
amplitudes have the form

I 2~.(k)+»P. (k)
a(ko, l)=so(ko,i)+-g, (2&)

g " Ln„(k) —ljt'n (k)+1+1]

where 2 o(k', 1) is holomorphic in l. When l becomes equal

to Ren (k), as k is varied, the corresponding partial
wave has a bound-state pole or a resonance depending

on whether a„(k') is real or complex, the two cases

corresponding to negative or positive k, respectively.
In fact, it can be proved quite generally from Eq. (1)
that for Rel) —-'„n„(k') is real for k'&0 ' (Rel= ——,

'
is excluded, see Sec. IU).

Finally, we remark that when the representation (23)
is true the analytic continuation of the amplitude to
complex l is unique. For a function that is zero at
integral values of / and behaves as e &~'I p&0 for
Re& const is identically zero. ' This is just the behavior

we must impose on A(k, l) in order that the Watson-

Sommerfeld transformation can be done in some region

of the s plane (see Appendix I).
Now we study the validity of the representation (23)

for the class of potentials considered here. We start
with the asymptotic behavior of 2 (k, v) in the v plane.
For fixed k, we have

(kro/2)"
J„(kro) ~ L1+O(k'/v)], I

argv I &~;
I' (v+ 1)

G. Prosperi, University of California Radiation Laboratory
Report UCRL-10116 (unpublished). See also E. J. Squires,
University of California Radiation Laboratory Report UCRL-
10033 (unpublished) .

Thus, unless L(k, v) is such that the last factor in

Eq. (26) becomes important, (see below), (8&/8&)
approaches zero faster than any exponential along any
ray in the right-hand v plane. Therefore, by Eq. (10),
the amplitude goes also to zero faster than any exponen-
tial. However, along any vertical, Rep=const&0, the
I' function and sinn. v compensate each other, (Bo/Bi)
behaves as a power and the amplitude goes to a con-
stant for Imv —& + oo, and to infinity for Imp —+ —oo .

The factor containing the unknown logarithmic deriva-
tive L(k, p),

Lv(2v —2roL(k, v)+1)—k'ro']/(2p+2roL —1), (27)

can change the results only if I (k,v) has such a special
dependence on k and p as to make this factor vanish
exponentially. We assume in the following that this
does not happen, as it will be shown to be true in the
next section.

Therefore we see that the integrand in Kq. (23) will

converge along any ray in the / plane, but not along a
vertical direction. We cannot modify the contour C into
C', and therefore must choose a path C" (Fig. 1) to
separate the pole terms as in Eq. (23). In this new
representation, the angle between C' and C" may be
as small as one pleases and interpretation of the poles as
representing the bound states and resonances remains
unchanged. But the asymptotic behavior of the ampli-
tude for large momentum transfer I is no longer given
by Eq. (24), because it will not be dominated by the
pole farthest to the right in the I plane. This result can
also be obtained as follows, which makes its physical
meaning clearer. The partial-wave expansion (21)
converges, by Faber's theorem, v uniformly and ab-
solutely, in an ellipse with semimajor axes io(k+k '),
where

k= 1;m I1/gg)Iut

In our case A(l) ~ e '-""', hence the expansion con-
verges in the whole cos8 plane, except at infinity. This
argument shows that the cut of Pi (—cosg) from cose= 1
to oo in Eq. (23) actually cancels in the sum of all terms
for the potentials we are considering. Therefore, the
amplitude is an entire function for all finite values of

7 E. T. Whittaker and 0, N. Watson, Modern Asepsis (Cam-
bridge University Press, New York, 1952), p. 95,
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cose and, because it is not a polynomial, as all partial-
wave amplitudes, Eq. (15), do not vanish, it must have
an essential singularity at inanity.

With the new contour C", the uniqueness of the
analytic continuation of A(k', l) in / is no longer true
without further restrictions, such as unitarity, etc.
Because the threshold behavior of the amplitude is
the same for all short-range potentials, we have chosen
the same analytic continuation as in the case of
Yukawa potentials.

IV. SINGULARITIES IN THE / PLANE

We have seen in Sec. II that for the class of potentials
we are considering the 5 matrix is a meromorphic
function in the product of the entire k and I planes
except for (1) the branch point at k =0, (2) the essential
singularities at infinity, both in k and t planes, and (3)
possible singularities of L(k, v) which will be discussed
for specific cases in the next sections. The poles in k
and I are given by the zeros of the denominator in
Eq. (15) and satisfy the equation

F (k, i)—= y+-', —roL(k, p) —xH+i&'l (x)/H, &'l (x) =0, (28)

where
x= kro.

This equation takes a simple form at x=0:
F (O, vo) = —i o+-,' —roL(0, i o) =0; Rei o)0,

F (0,vo) = vo+ s —
roL (0,po) =0; Rei o(0, (29)

where vo is the position of the poles at zero energy. Equa-
tion (29) will be used to locate and "count" the poles
in the I plane in the numerical calculations (Sec. V).
For Revo=0, one does not get a simple limit as x —+ 0
for the ratio of the Hankel functions in Kq. (28). As a
matter of fact, poles along the imaginary p axis for
k'(0 cannot be excluded in general. '

The symmetry of the zeros and poles of the S matrix
for complex angular momentum is easily discussed. It
follows from Eq. (16) that if (k,i) is a pole of the S
matrix, then (k*,i*) is a zero. Clearly, then, if a pole
occurs at a point where both v and k are real, its residue
must vanish. This is generally the case for the poles at
(0 vo) (where vo is real). Note that the points where the
residues are zero form a line in the four-dimensional
(k,i) space. This is based. on unitarity alone and is
true for all potentials.

8 The proof that for k'(0 the poles in the / plane are along the
real i axis is based on the equation (obtained simply from the
Schrodinger equation as in reference 1 where, however, the erst
term is missing):

Rek
( p(R) i'+Rek Imk

( o ('dr

—2 ReX ImX (~ y~'/r')dr =0,
0

V. SQUARE-WELL POTENTIAL

For the three-dimensional "square-well" potential

V(r) = —Vo for r~r , o

V(r) =0 for r) ro. (30)

(Vo positive corresponds to an attractive potential, Vo

negative to a repulsive potential) the logarithmic
derivative function roL(k, X) of Eq. (13) is easily found
to be

A'(y) , , Api(y)
roL(k, p) =y +-,'=X+-',—

y
A(y) A(y)

where
y= (x'+ V)'*, V= Voro', x=kro.

(31)

Although both y and Jx(y) have branch points in the
k' plane at k'=kos= —Vo(y=0), the function roL(k, X)
is a holomorphic function of k at this point, for

~.+ (y)

Ji(y) ~"~ '2()t+1)
~ 0, X& —e.-

Hence roL(k, X) is a meromorphic function of both
variables k and X. Note, however, that at the points k'
=ko', X= —e the function is undetermined. In fact we

get, for instance,

but

since

lim I.(k, —is) =tr+
Ic ko

lim L(ko,),) = —is+-,'.
X~n

Furthermore, we see from the circuit relation (17)
that a zero at (k, i ) implies a pole at (ke+', i), but not
vice versa, and from (19) that if there exists a pole at
(k*,i*), then there is also one at (ke', i). This last
property is a generalization of the symmetry of the
poles in the lower half k plane with respect to the
imaginary axis for physical values of /.

We denote the solutions of Kq. (17) in the / plane for
fixed k by u„(k). As solutions of an analytic equation of
the form F(k,j)=0, these functions n„(k) are themselves
analytic everywhere where F(k,l) is analytic in both
variables and the derivatives r)F/r)I do not vanish.
Clearly, F(k,v) is analytic in both variables except for
singularities of L(k, i); the branch points of the Hankel
functions at x=0 cancel, as can be seen from Eq. (29).

We shall concentrate in the next section on the
determination of the poles in the l plane as a function
of the energy k' (k' real, negative, and positive) and
refer to them as Regge trajectories. In the k' plane the
functions ix„(k') have the usual right-hand kinematical
cut from 0 to eo. It follows quite generally from Eq. (1)
that tr„(k) has a positive imaginary part for k'&0 and
is real for k'&0) both for Re~~) —~.'

so that if Re%, &0, we have Im'A=O for R.eh=0. Thus, if ReX=O,
In& can be diferent from zero. The trajectories of these poles
(if they exist) will leave the imaginary axis for k')0.

~--+i(y)
3' —2s) 6= 1) 2) 3)

J--(y) ~"~
(32)
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These indeterminacy points are, by definition, inside
the domain of meromorphy. Functions of several
complex variables cannot have isolated singularities,
and the indeterminacy points lie, in fact, at the inter-
section of the "pole surfaces" with the "zero surfaces. "
It follows then that the trajectories of the poles in the
/ plane as a function of k' originate or pass through these
points (kp', X= —n).

We also note the simple expression

rpL(kp, X) = X+-', , XN —n,

and the properties

L(k,X) =L( k, Xi—),

so that the generalized unitarity relation (16) holds, and

L(k,n) = L(k, n),—n integer,

l0

0
-6 -2 0

i

2

I'IG. 2. Position of the
poles in the l plane at
k~=0 as a function
of potential strength.
U= Uprp . (a) Attractive
square well. (b) Repul-
sive square well.

Api(y) %+i"'(~)
y- —x — =0,

A(y) K"'(p:)
(33)

and for k=0

(also for k=kp) so that, because X—= v in this case, the
amplitude has the symmetry of Eq. (20).

These properties of I. completely specify the analtyic
behavior of the 5 matrix, as discussed in Sec. II, which

is, we summarize, a meromorphic function in the
product domain of the finite k and P planes except for a
branch "line" at k=0 (all X except half-integer). The
essential singularities at in6nity in k and ) have been
discussed in Sec. II.

For large X we have

rpI. (k,X) —+ X+-' —y'/2X,

and the factor of Eq. (27) vanishes only as a power.
Therefore the conclusions of Sec. III about the Watson-
Sommerfeld transformation hold.

Equations (28) and (29), which determine the poles
of the scattering amplitude, become

0 l l

-8 -6 -4

denumerable infinity of poles along the negative real X

axis approaching asymptotically the negative integers
as e —+ ~ ~ If the potential is strong enough and
attractive, some of the poles occur along the positive
real X axis, as shown in Fig. 2. Furthermore, as the
potential goes to zero, the position of the poles at k=o
also approaches the negative integers.

We may also study the effect of a 1/r' core and tail
to the square-well potential:

V= —Vpf L1+p
—p(rp/r)'l8(« —")

+ e (rp/'r)'8 (r—rp) ) . (35)

The discussion of the effect of the core in Eq. (35) will
be reduced to that of a tail as follows. The 5 matrix
for the potential (35), S()i,Vp, e,p) is the same as that
for the potential

V= —Vpf(1+p)8 (rp —r)+ (p+ e) (rp/r)'8(r —re)],

Ap+i ( Vl)
= 2Xp

Ji„(V'*)
=0

for Reh.p) 0,

for RQ.p(0,

which has no core, aed X replaced by

X= (X'+PV)"'.
Or,

or, using the recursion relations of Jq and the fact that
A(s) and A+ (s) (n=1, 2, 3, ) have no common
zeros other than at a= 0,'

A, i(V'') =0 for Re)~p) 0,

Ji,„i(Vl)=0 for Re'Ap(0. (34)

Thus, for k =0, the poles of the 5 matrix are obtained
from the zeros of the Bessel functions with respect to
the order. The number of trajectories and their positions
at k'=0 are then completely determined. There are a

' Hi gazer Trazzscezzdenta/ Functions, edited by A. Erdelyi
(McGraw-Hill Book Company, New York, 1953), Vol. 2, p. 60;
M. J. Coulomb, Bull. Sci. Math. 60, 297 (1936).

S(X,Vp, e,p)

=SL()'+pV)"' Vp(1+p), (p+e)/(1+p) K (36)

It is thus sufficient to study potentials with a tail only.
There is one interesting feature of the core and that

is the cut introduced in the A, plane due to the term
(X'+PV)"". Different analytic continuations are there-
fore possible according to the choice of the branch cuts.
The branch points are on the imaginary axis at
X=- &i(PV)"'-. If we choose the branch cut from
—i(pV)"' to +i (pV)"', we obtain a continuation that
goes continuously over to the case p=o. If, however,
we choose the cuts running from i~ to i—(pV)"'—
and from i(pV)"' to +i ~, then S in (36) is an even
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FIG. 4. Threshold behavior of the position and residue of the
highest pole. Square well, U=9.6. For negative energies both
Rep and Imp oscillate very rapidly and have not been shown.

FIG. 3.Threshold behavior of the positions and residues of the two
highest poles 0,1 and e2. Square well, U=2.25.

function of X. For this case we have the curious result
that there are a finite Dumber of poles symmetric with
respect to the imaginary axis, namely, the "physical
poles" and their images.

Numerical calculations, using IBM 704, have been
performed to determine explicitly the trajectories of
the poles in the / plane and their residues. Two different
subroutines have been used for the Bessel functions of
complex order and argument to verify the results.

The threshold behavior of the parameters of the
poles is shown in Figs. 3, 4, and 5 for three different
strengths of the pure square-well potential. One expects
on general grounds that the threshold behavior is the
same for all potentials, even for the relativistic case
(if no is real at k=0), and the numerical result agrees
with this general theoretical behavior. Near the inde-
terminacy points in the left-hand / plane, the residues
of the pole become very large and oscillate, and we
have not been able to continue the trajectories beyond
these points. Below threshold P(k')/k' is real and
checks again with the general result. '

Figure 6 shows the trajectories for larger values of
(kro)', and some typical trajectories in the / plane are
shown in Fig. 7. The potentials discussed here take a
place intermediate between Coulomb and Yukawa
potentials: At threshold they behave more like a
Vukawa potential, but the trajectories extend to
infinity instead of being bounded. Although the Reo.
curve cuts the integers infinitely many times, Imn
becomes so large that these points can not be interpreted

0.3
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0.1—
ReP
imP 0—

Rea

-0.1—

—0.2—

-0.3—

—0,4—

-0.5—
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Ima

—0.1

-0.6,'

1.0
ikro

0.5 0.5
kro

1.0

FIG. 5. Threshold behavior of the positions and residues of the two
highest poles. Square well, V=20.0.

as true or sharp resonances. The residues for large
values of energy are shown in Figs. 8 and 9. The
asymptotic form of the trajectories as k' —+ ~ is
discussed in Appendix H.

For potentials with a tail the quantity v is imaginary
for ~X~' 'eV, X real Lv= (X'—eV)l]. Returning to
Eq. (29) and the discussion following it, we see that we
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0
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Rea
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FIG. 7. Typical trajectories in the l plane for square-well
potential. Superscripts on a refer to the potential, subscripts to the
number of pole. For comparison a Coulomb trajectory and
(schematically) a Yukawa trajectory is shown ) A. Ahmedzadeh,
P. G. Burke, and C. Tate, Lawrence Radiation Laboratory
Report UCRL-10140 (unpublished)]. The scale of this 6gure is
such that one does not see the correct threshold behavior which is
shown in detail in Figs. 3, 4, and 5.
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FIG. 6. Positions of the poles for larger values of energy. Curves
1, 2, 3, and 1', 2', 3' refer to real and imaginary parts of the erst
three poles for V=20. Curves 4, 5, 6, and 4', 5', 6' to those for
V=2.25. The case V=9.6 is intermediate and similar,

can have poles with pure imaginary vp (but still real /)
not given in the previous analysis. In fact the missing
pole" ending at ——,

' in Fig. 2 is found in this case. These
poles have also quite a different threshold behavior,
because v is not real at threshold as shown in the two
examples (Figs. 10 and 11).For )I') eV the trajectories
are again "normal, " as shown by the upper curve in
Fig. 8. The asymptotic behavior of the trajectories is
again as before.

VI. CONTINUOUS SOLUBLE POTENTIALS

The S matrix for the following class of continuous
potentials can also be explicitly evaluated:

In the 5-matrix expression of Eq. (15) we now have

v= PP —e(1—p) V$"' V r'=Vp, A=i+-,',

and the logarithmic derivative function

rpL (k,X) = c——,
' —s+ 2' '(a, c; s)/C (a,c; s)

(p= (rlrp)' 'e ""'"o"=Cpa)c)s(r/rp)'j. (38)

Here C (a,c; s) is the confluent hypergeometric function
defined by the series

r(a+ts)r(c) s"
4 (a,c; s) = 1+ Q-

~=t r(a)r(c+ts) n!
(39)

and a, c, and s are given by

s= —LV(1+ ep —p) j'"
c= 1+P 2+PV)lis

1 x'+ V(1+e)
8=— c— x= krp.

obtained from the interior solution of the Schrodinger
equation

= —Vpe(1 —p) (rp/r)'

V(r) = —VpL1+e —(1+ep p) (rlrp)' —p(rp/r)'j
for r &rp, (37)
for r) rp.

ReP ""
p(o)

( 2
R p (20)

The parameters Yp and r p determine again the strength
and the range of the potential, whereas e and p char-
acterize its shape. The potential is continuous for all
values of e and p. For &=1, its first derivative is also
continuous. For e/0 the potential has a 1/r' tail
outisde rp. The behavior of V(r) at r=0 is controlled
by the parameter p,. when p=0 the potential attains
its extremurn value —Vp(1+ e), whereas for p/0 it has
in the origin a core of the form Vpp(rp/r)'. In the latter
case the scattering amplitude is de6ned only if Ypp
is positive, i.e., a repulsive core.

0—

—1
4

1

2
-Ikl'0 kr0

12

FrG. 8. Residues for the highest pole. Square well,
V=20 and V=2.25.
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Fro. 9. Residues for the second and the third pole.
Square well, V=20. i1.0 1.0

It is seen from Eq. (39) that the confluent hyper-
geometric unc ionf t C(ac s) is an entire function o s
and a; as a function of c it has simple poles at c=
—2 —3 . In fact C (a,c; s)/I'(c) is an entire function
of all three arguments. The ratio C,a, ,
therefore a meromorphic function of the two variables

constant independent of k and X.) At the points a= c
=0, 1 2 3 the ratio is indeterm, inate. It

can be seen that C '/C has different limits as a= c —+ —n

These are again nonessentialaild c= —s) 8~ C.

1 ies of the second kind, as we have found themsingu arities o e s
also in the square-well potential, i.e., ice~ in e

oints of the two zero surfaces of y' and q.poin s o
Now we have to pass from c an a o ed a to the variables

d X. If =0 (potentials without core, we have
hlc ln thec= 1+) and hence L(k,X) is meromorphic in

product domain o o vd f b th variables. The indeterminacy
points are at

tential. S uare well, V=9.6,FxG. 10. Effect of a tail in the potentia . q
. ~35 . A new trajectory appears at ~

. The behavior of "normai"with distinct threshold behavior
pooles is the same as before (ni).

for the square-well potential. A yp't ical example is
given in Fig. 12.

J

Imp xlgO
'

15—

10—
ReP
ImP

Rea

VII. OTHER POTENTIALS

W ider two more cases of solu ple otentialse consi e
of view ofwhich are of some interest from the. point o

three-dimensionalcomplex angular momenta. One is a re - '

x'= (krs)'= (1—I)V"'—V(1+e),

%=0, 1, 2, 3, ~ ~ ~ .
(41)

0—

For attractive potentials and e)0 these points occur
always at real negative energies, for repulsive potentials
at complex energies.

The case p&0 introduces a cut in the ) plane ~ ue to
the square root in c~ w it ~ which has been discussed in the
case of the square-well potential with core.

condition (16) holds again because I.is an even function
of k. For large X and fixed k, rsL(k, X) approaches )t, as
111 the case of square-well potentia .

The poles of the S matrix are again given by q. (E. 28)
with rsL(k, ),) given above.

The numerical results are qualitatively the same as

RePxl

-10— Ima

-15—

1

0,2
-ikr,

0.5
kr,

0
1.0

uare well with a continuous tail, V=9.6, &=1.0,Pro. 11. Sq )

tions in ReP and ImP. Note t e c ange o
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The ot er interesting case is the i.i
f hh

S= —Hy "&(x)/Hg "&(x)

Clearl thery there are no poles for ReX)0 becauther e ecause H~"&(x)

ol t th hid 1es o wi 1 again onl be

0—
—0

Ima

VIII. CONCLUSIONS

We conclude here with ab '
f y

w ic vanish or behave as 1 r'
a range ro, but arbitrar in

'
s r outside

i rary insi e, we have shown that:
-10—

0.2
-ikr 0 kr,

FzG. 3.2. ~. 3.2. A typical example of a tra e. 3.2. ~ o a trajectory for a continuoous

abnormal" t aj cto y (Not . ao ag o bci

nite-range potential

V= Vp5(r —ro),

for which the 5 matrix brix is given by

1—-', im VJ&, (x)B&,t'&(x)
S(k,X)=

i+-', im VJ&, (x)Hg&'& (x)

x= Pro, V= Voro

The olesp s are given by the solut f hions o t e equation

J&,(x)Zg&'&(x) =i2/m V

At threshold and Re) &0, we get simply

Xo= —V/2,

C

' Note that the f
l

'
bl dzh

unctrons Jq(x) considere
ave indeterminacy points X= —e x=0.

P

( )

i.e., for a given attractive potential (V(0& th

Thus for all potentials of this t eyp there is a t
r o rajectories crossing the ne ag g

y o attractive potential,
e wi e one extra trajector that

g y Eq. (43) at k=0. For
e = t ere may be again, at k=0 1

imaginary X axis.
, poles on the

Th e matrix is a meromor hi
~ ~

or a rane point at k=0 essen i
ifii i b h/ d p ssible singularities ofo an k, and o

ogarit mic erivative function. "
(2) The Sornn&erfeld-Watson tran sformation cannot

era, e written for the ori inal c
)

'gina contour but for a
one so t at one can still defin

in cos8 of the am 1 t d b
r, ey o not control the as m thd symp otic behavior

e amp itude because the am li
1 1

continuation
ari y at infinit infi y

'
coso. The analytic

ion in is not unique. We have cho
one which corre pond t h
potentials. X t h

s otatof the
s. o e t at the threshold beha

'
the Yukawa-type

poles is the same f ll h - og pe or a s ort-ran e o

For a class of exactly soluble po"
p pos u ie t e properties of

~ ~

eir trajectories and residues as a func
energy (in particular th

'
h

behavior) as shown
'

h 6g
eir t reshold and a

own in t e 6gures. The
to i fi it ithwi energy in contrast to what ha
Yukawa-type potentlRls.

w a appens for

We have pointed out the existence o
s o t e matrix and located them explicitly.
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APPENDIX I. ASYMPTOTIC BEHAVIOR OF
LEGENDRE FUNCTIONS

We ivgive here a more corn lete
can find in the

p e e discussio~ than one
n in t e literature of the as m to

'

or ~ oo and the existence of
Watson-Sommerfeld transform.

of the

The I.egendre functions can bn e ti RIis ormed lIlto
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suitable hypergeometric functions and one obtains" Imz Imx

P (s) ~ (e((+', )r+-e+((~/&)e ((-+,' )l')--(A1)
[([

—&~ (~l)1/2 (1 e
—sr) 1/s

—ss —ei argl &-',s.+es ei es)0
and Imk&0

Rez

Imh, &0

Rez

g
—(&+&)t' g

—(l+~s)f

s=coshi, {= $+ir/.

We choose (&0 and —s (r/&s. so that $ is unique when
2: is given except when 2' is real and &1.The & sign in
(A1) is according to Ims being greater than or less than
zero, respectively. In s-plane curves with )=const are
confocal ellipses, and curves with q= const are confocal
hyperbolas with foci &1.

Let X=l+-,'=4+iXs, then

P ( )/
'

l l—i/sLQ X $—i —[X [+$3 —x t+i [x (j
) )(-+oo

Depending on s and l, one of these exponential dom-
inates, namely, according to )(i$—)(sr/ being greater than
or less than zero. We find then

Q/(s) ~ ()r/l)'" — —= (s/2l)'/', (A2)
(1 e—&r))/s (sinh{ ) '/s

~arg(s~1)
~

&7r, ~argl~ &s —5.

Fzo. 13.Regions in s plane for the asymptotic
expressions of E((s)/sinful.

as a power in l, 2 (l) (O(1/li), as ~l
~

—+ ~, and not as
an exponential. )As a matter of fact, if ~)f ~

~ oo, i.e.,
s not on negative real axis, A (l) can even increase as a
power. ]

APPENDIX II. ASYMPTOTIC BEHAVIOR
OF TRAJECTORIES

To investigate the asymptotic behavior of the
trajectories in the square-well case, we need the
asymptotic form of the Bessel functions J„(x).This form
is different depending whether x or v approaches
infinity faster. We first look if the trajectories are such
that )x~/~ v) —+ oo as x —+ eo, Under these conditions
we have the limits

~ (1)(x)~ (~x/2)
—i/se((z —nv/s~/4)

J„(x)-+ (ex/2) "'cos(x—s v/2 —7r/4),

(A3) which, when inserted into Eq. (33), give

expl —i(x—-s v —~)j=0.
Pi(s)/sins l ~ l—)/se+4$ —x2s-Il'[x2(

for s in the shaded regions (Fig. 13), and

P&(s)/sjn~i ~ l 1/&e—Xit+4~+[x2[ Clearly, we have no solutions unless x~ —i. For
real x, therefore, ~v~ must go to infinity at least as
fast as x. Also for x —++ice, the trajectory does not
approach a finite limit in the v plane either. {For
x—)—ioo, we6nd from Eq. (33) v„'+v„+$(2V'—7)/4)
+0(1/x)=0. Thus, two trajectories seem to have a
finite limit if the energy is in the second sheet. }

Secondly, if
( v~/~ x'( ~, we can use the limit

Pi(s)/sins. l ~ l '/'e"'t for all s.
real

For e=e/2 0()=0) we obtain, again for all s, J,(x) ~ (x/2) "/I'(v+1),

for s in the blank regions. For 'A2=0 the blank region
reduces to zero, and we obtain the most stringent
condition that

P((s)/sin7r ~l "'e~"'~««"'~ (A6)

where g greater than or less than zero corresponds to
upper- and lower-half s planes. Because ~r/~

&s., in
order to make the integral in Eq. (23) convergent, the
amplitude along the imaginary axis need only vanish

which shows that there is no solution of (33) for
Rev&0 and Imv'&0. We conclude, therefore, that the
trajectories in the l plane go to infinity at infinite
energies, in such a way that

I v) xe 1&P&2.

"G.N. Watson, Trans. Cambridge Phil. Soc. 22, 277 (1918). This is also indicated by the numerical results (Fig. 7).


